

Gummi-Feinriefenmatten

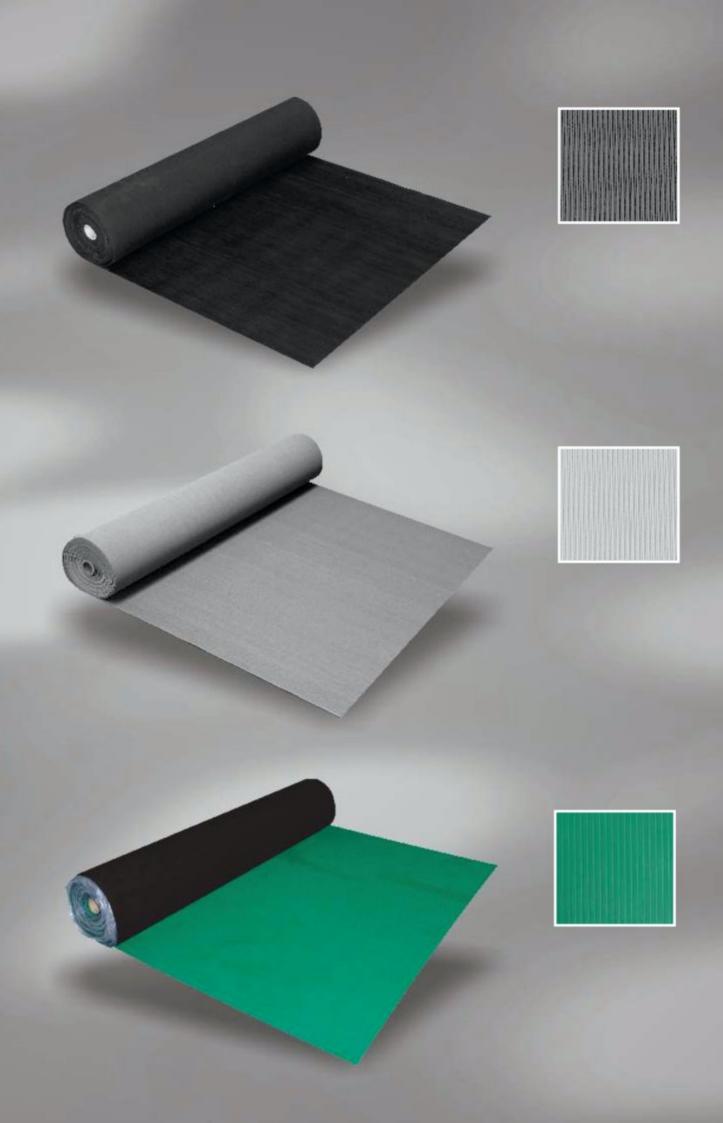
dienen als Auslegware für verschiedene Anwendungsbereiche, hauptsächlich um die Gefahr des Ausrutschens zu vermeiden und Stolperkanten zu reduzieren.

Anwendungsbeispiele: Auf Fußböden, in öffentlichen Verkehrsmitteln, Eingangsflächen, schiefen Ebenen, Treppenhäuser, Lager- und Verkaufsflächen, Laderampen, in Wohn- und Transportwagen, als Kabelbrücken sowie als Zuschnitte in Verkaufsdisplays, Werkzeugkästen, Schubladen, Fahrzeugeinrichtungen und vieles mehr.

Durch die optimale Stärke von 3 mm der Feinriefenmatte ist das Auslegen der Ware sehr einfach durchzuführen (ca. 3,8 kg/m.).

Qualität: NR/SBR

Härte: 65 +/-5° Shore A


Oberfläche: in Längsrichtung gerieft

Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)

Artikel	Stärke	Breite	Farbe	Ausführung
53210010	3 mm	1000 mm		
53210030	3 mm	1200 mm		
53210101	3 mm	1000 mm		mit Gewebeeinlage
53210121	3 mm	1200 mm		mit Gewebeeinlage
53210050	3 mm	1000 mm		
53210060	3 mm	1200 mm		
53210070	3 mm	1000 mm		
53210080	3 mm	1200 mm	12	

Gummi-Breitriefenmatten

werden dort eingesetzt, wo die Gefahr von Ausrutschen vermieden werden muß, z.B. auf Fußböden, in öffentlichen Verkehrsmitteln, Eingangsflächen, schiefen Ebenen, Treppenhäusern, Lagerund Verkaufsflächen, Laderampen oder als Auslegware für Wohnwagen, Tranportwagen, Werkzeugwagen und Schubladen. (Leichtere Reinigungsmöglichkeit durch breite Riefenstruktur.)

Qualität: NR/SBR

Härte: 65 +/-5° Shore A

Oberfläche: in Längsrichtung gerieft

Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)

Profil:

1,5 mm

Artikel	Stärke	Breite	Farbe
53251000	3 mm	1000 mm	
53251200	3 mm	1200 mm	

Gummi-Leistenmatten

werden dort eingesetzt, wo die Gefahr von Ausrutschen vermieden werden muß, z.B. auf Fußböden, in öffentlichen Verkehrsmitteln, Eingangsflächen, schiefen Ebenen, Treppenhäusern, Lager- und Verkaufsflächen und Laderampen. (Leichtere Reinigungsmöglichkeit durch breitere Riefenstruktur)

Oualität: NR/SBR

Härte: 65 +/-5° Shore A

Oberfläche: in Längsrichtung gerieft

Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)

Profil:

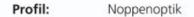
3 mm

Artikel	Stärke	Breite	Farbe
53201000	6 mm	1000 mm	
53211200	6 mm	1200 mm	

Gummi-Noppenmatten

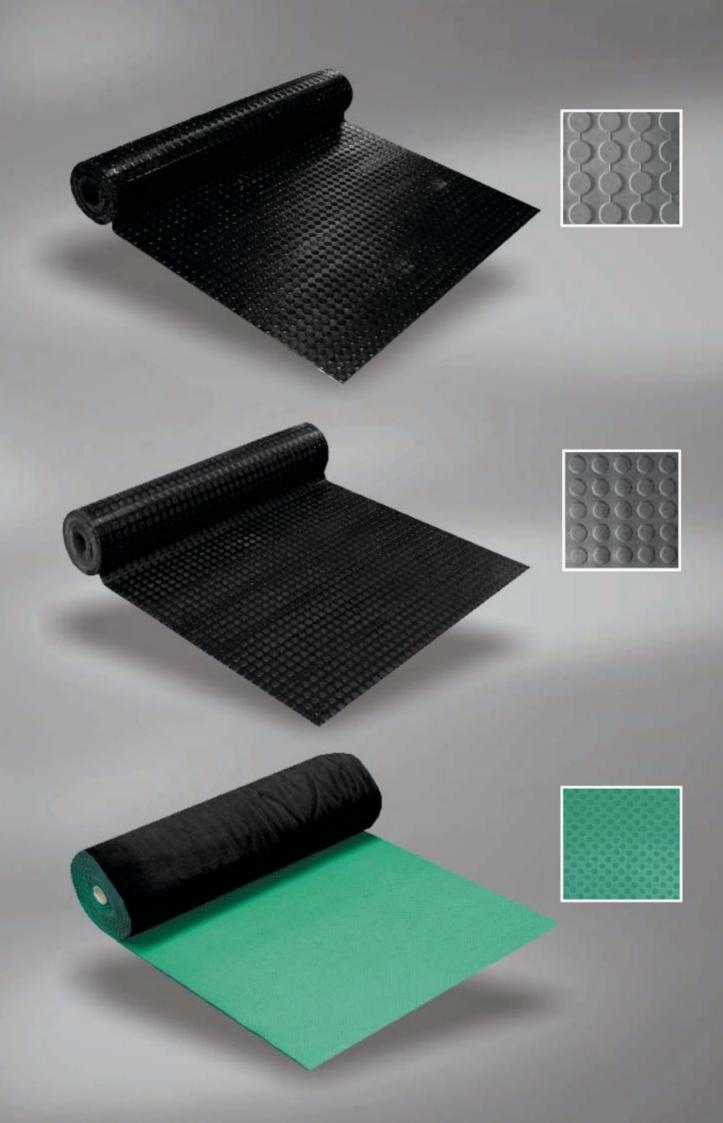
eignen sich optimal zur Auslegung von Eingangs-Bereichen, Verkaufsräumen, Treppenstufen, Messeständen, etc.

Qualität: NR/SBR


Härte: 65 +/-5° Shore A

Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)



Oberfläche	Artikel	Stärke	Breite	Noppen Ø	Farbe
Flachnoppe	53021231	4 mm	1230 mm	25 mm	
Noppenoptik	53021234	4 mm	1200 mm	25 mm	
Punktnoppe	53021233	4,5 mm	1000 mm	3,5 mm	

Hammerschlagmatten

eignen sich optimal zur Auslegung von Eingangs-Bereichen, Verkaufsräumen, Treppenstufen, Messeständen, etc.

Qualität: NR/SBR

Härte: 65 +/-5° Shore A

Oberfläche: Riffelblech-Optik

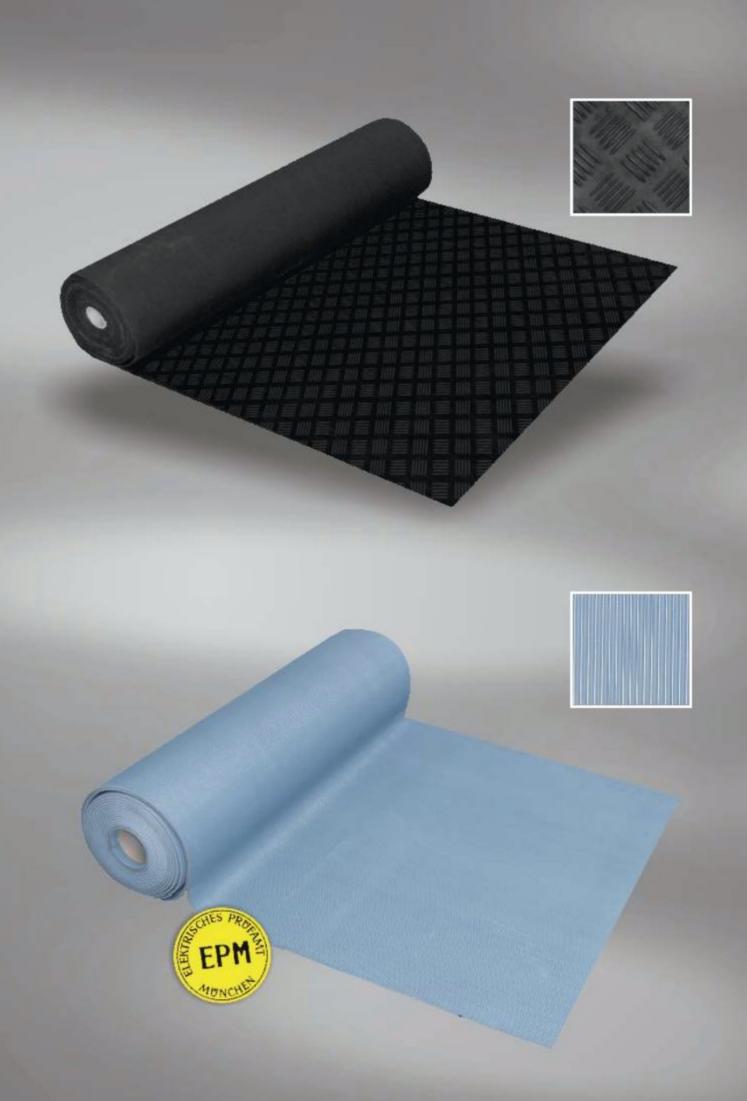
Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)

Artikel	Stärke	Breite	Farbe
53021235	3,5 mm	1200 mm	

Elektro-Isoliermatten

Gemäß VDE-Norm 0303 sind für die Ausstattung von Trafo- und Hochspannungs-Schalträumen. Sicherheitsmaßnahmen vorgeschrieben, z.B. die Verwendung geprüfter Isoliermatten. Neben dem Personenschutz gewährleisten diese Matten auch den Schutz vor elektrostatischer Aufladung. Die Isoliermatten von Georg wurden beim Elektrischen Prüfamt München auf die elektrische Durchschlagfestigkeit gem. DIN VDE 0303, Teil 21/03.96 geprüft und zertifiziert. Sie sind geeignet für den Einsatz bis zu 50.000 Volt.


Qualität: NR/SBR

Härte: 65 +/-5° Shore A

Unterseite: stoffgemustert

Lieferform: Rolle á 10 m (auch als Zuschnitt lieferbar)

Artikel	Stärke	Breite	Farbe	Oberfläche
53210100	4,5 mm	1000 mm		längs gerieft
53210120	4,5 mm	1200 mm		längs gerieft
53220100	4,0 mm	1000 mm		glatt

Gummiplatten

für technische und industrielle Einsatzzwecke. Sie finden Verwendung als Dichtungen, Vorhänge, Auskleidungen, Abstreifer, Auslegware und mehr. Sie bieten Schutz gegen Abrasion und sind zur Dämmung von Schwingungen geeignet.

Qualität: NR/SBR

Härte: 65 +/-5° Shore A

Farbe: schwarz

Oberfläche: glatt

Unterseite: glatt

Lieferform:

Rolle á 10 m (auch als Zuschnitt lieferbar)

Artikel	Stärke	Breite	Ausführung
16401002	2 mm	1200-1400 mm	Standard
16401003	3 mm	1200-1400 mm	Standard
16401004	4 mm	1200-1400 mm	Standard
16401005	5 mm	1200-1400 mm	Standard
16401006	6 mm	1200-1400 mm	Standard
16401008	8 mm	1200-1400 mm	Standard
16401010	10 mm	1200-1400 mm	Standard
16405002	2 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405003	3 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405004	4 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405005	5 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405006	6 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405008	8 mm	1200-1400 mm	mit 1 Gewebeeinlage
16405010	10 mm	1200-1400 mm	mit 1 Gewebeeinlage

Weitere Gummiprodukte in verschiedenen Abmessungen und Ausführungen für Ihren individuellen Einsatzzweck.

Gummi-Qualitäten siehe Seite 14+15

Dichtungen werden nach DIN und Kundenwunsch für die jeweilige Anwendung gefertigt.

Streifen in verschiedenen Standardabmessung oder nach Kundenwunsch aus Vollgummi oder geschäumten Gummi (Moosgummi, Zellkautschuk).

Profile aller Art in vielen Querschnitten und kundenspezifische Sonderprofile lieferbar.

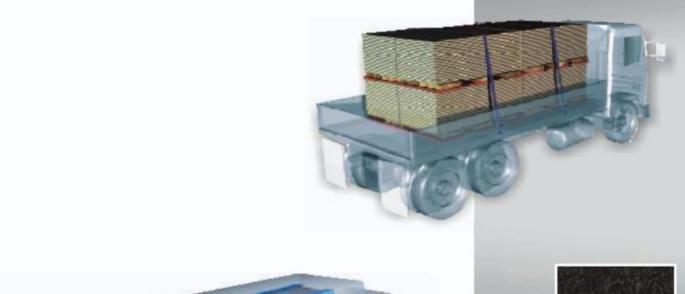
Zuschnitte können mit Bohrungen, Radien, Abwinklungen, als Rahmen sowie nach Ihrer Zeichnung gefertigt werden.

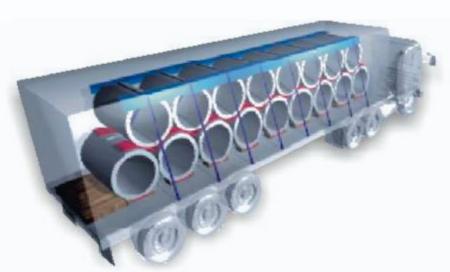
Formteile nach Zeichnung oder Muster möglich

werden zur Befestigung und Sicherung von Transportgut eingesetzt und gewährleisten den sicheren Transport auch bei Bremsmanöver oder Unebenheiten in der Fahrbahn.

Die Matten reduzieren darüber hinaus die Spannkräfte beim Niederzurren der Ladung und den Anpressdruck empfindlicher Lasten. Auch Schäden an Fahrzeugen sowie der Ladung werden minimiert. Spanplatten, Blechzuschnitte, Betonplatten, Rohre, Maschinenbauteile oder Coils werden somit sicher transportiert.

Typ 8012 hochfest, BIA geprüft (BG Prüfzertifiziert V 98060)


Gleitreibwert: ca. 0,70


	Artikel	Breite	Länge	Stärke
Rollenware	16068012	1500 mm	10 m	6 mm
Rollenware	16088012	1500 mm	8 m	8 mm
Rollenware	16008012	1500 mm	6 m	10 mm
Streifen	16158012	250 mm	5 m	8 mm
Streifen	16108012	250 mm	10 m	8 mm
Zuschnitte	16288012	100 mm	200 mm	8 mm
Zuschnitte	16208012	100 mm	200 mm	10 mm
Zuschnitte	16388012	300 mm	300 mm	8 mm
Zuschnitte	16308012	300 mm	300 mm	10 mm

Typ 7210 z.B. für Einwegverwendungen (BG Prüfzert. 200022159)

Gleitreibwert: ca. 0,50 - 0,70 (Mindestanforderung Gleitreibwert: 0,40)

	Artikel	Breite	Länge	Stärke
Rollenware	16067210	1250 mm	10 m	6 mm
Rollenware	16087210	1250 mm	10 m	8 mm
Rollenware	16007210	1250 mm	6 m	10 mm
Streifen	16157210	250 mm	5 m	8 mm
Streifen	16107210	250 mm	10 m	8 mm
Zuschnitte	16287210	100 mm	200 mm	8 mm
Zuschnitte	16207210	100 mm	200 mm	10 mm
Zuschnitte	16387210	300 mm	300 mm	8 mm
Zuschnitte	16307210	300 mm	300 mm	10 mm

Verwendung als Anti-Rutschmatten

Ob Vollbremsung, Ausweichmanöver oder Unebenheiten der Fahrbahn - die Ladung eines LKW darf das nicht bewegen!
Aber nur in wenigen Fällen ist eine ausreichende Ladungssicherung allein durch den Fahrzeugaufbau möglich. Dabei gehören gleithemmende Hilfsmittel heute zur Standard-Ausrüstung für jeden professionellen Transport.

Handelsprodukt- Bezeichnung	Naturkautschuk	Buna	EPDM	Perbunan
Internationale Bezeichnung	NR	SBR	EPDM	NBR
Elastomere	Naturkautschuk	Styrol-Butadien- Kautschuk	Ethylen-Propylen- Dein-Kautschuk	Nitril-Butadien- Kautschuk
und ihre optimalen Eigenschaften	ein Naturprodukt, höchste Elastizität und Reisfestigkeit sowie ausgezeichnete physi- kalische Eigen- schaften.	besitzt gute mecha- nische Eigenschaften, hohen Widerstand gegen Biegerißbildung und Luftalterung, beständig gegen Alko- hol, Aceton, Glykol und Laugen.	beständig gegen at- mosphärische Einwir- kungen. Ozon und UV- Strahlen sowie gute chemische Ressistenz gegen eine Vielzahl von Laugen, Säuren, Wasser, Wasch- und Spülmittel.	hervorragende Quellbe- ständigkeit gegen mi- neralische Fette, Öle und Benzin. Gute Abriebfestigkeit.
bzw. ungeeignet	Nicht geeignet für Ben- zin, Benzol, Fette, Hitze und Ozon.	Nicht beständig gegen Benzin, Benzol, Mineralöle und Fette.	Nicht geeignet für Ben- zin, Öle und Fette auf Mineralölbasis	Nicht beständig gegen Benzol, Aromate, Ester und chlorierte Kohlenwasserstoffe
Härtebereich Shore A	30 bis 90	30 bis 90	30 bis 90	35 bis 90
'ugfestigkeit N/mm	30	25	25	25
Bruchdehnung %	800	450	450	500
lastizitāt	1	2	3	3
Druckverformungsrest	2	2	3	2
Abriebswiderstand	3	2	3	2
	F0.1/2 - 00	-40 bis +90	-40 bis +120	-50 bis + 100
emperatur-Anwendungsbereich °C	-50 bis +90		+150	+ 130
Kurzzeitig °C	+100	+100	+150	+ 130
Dzonbeständigkeit	5	4	1	5
Alterungsbeständigkeit	4	3	1	4
Vasserbeständigkeit bis + 80°C	3	2	2	2
augenbeständigkeit bis + 80°C	3	3	3	3
Gasundurchlässigkeit (3	3	3	2
Benzinbeständigkeit	6	6	6	3
Benzolbeständigkeit	6	6	6	5
Mineralöl- und Fettbeständigkeit	6	6	6	1
äurenbeständigkeit	3	3	3	4
ignung für Metallbindung	1	2	4	3
	ja	ja	ja	ja

Elektrische Eigenschaften

Durch Mischungsaufbau leitfähige, isolierende oder antistatische Eigenschaften möglich.

Neoprene	Hypalon	Butyl	Silikon	Viton
CR	CSM	IIR	VMQ-MVQ	FKM-FPM
Poly-Chloporen- Kautschuk	Chlorsulfoniertes Polyethylen	Butyl-Kautschuk	Silikon-Kautschuk	Fluor-Kautschuk
hervorragende Wit- terungs- und Ozon beständigkeit sowie Flammwidrigkeit, bedingt ölbeständig. Nicht beständig gegen Benzin, Benzol, Toluol, Ester und Ketone.	gut beständig gegen Ozon, Alterung, Säuren und viele Chemikalien, gute elektrische Durch- schlagfestigkeit und Flammwidrigkeit. Bedingt beständig gegen Öle.	ausgezeichnete Be- ständigkeit gegen Sauerstoff, Ozon, Al- terung, Hitze, Dampf, chemische Angriffe, geringe Gasdurchläs- sigkeit, sehr geringe Elastizität - deshalb gute Dämpfung. Nicht beständig gegen Mineralöle und Fette.	einsetzbarer Tempera- turbereich von -60° bis +240° C, nicht für Dampf geeignet, sehr gute Alterungs-, Ozon-, Wasser- und Mineralöl- beständigkeit, gute elektrische Eigenschaf- ten sowie physiologisch unbedenklich. Geruch- und geschmacklos.	einsetzb. Temeraturbe- reich von -20° bis +310°, sehr gute mechanische Eigenschaften auch bei höheren Temperaturen aus, hervorragende Be- ständigkeit gegen Ozon, Sauerstoff, Wärme, Öle, viele Lösungsmittel, Treibstoff, Chemikalien, jedoch nicht gegen Al- kalien, geringe Wasser- aufnahme, sehr gute
	constituti (addiniani	Section Scatter Professional	Na Pagas Office A	elektr. Isolationswerte.
30 bis 90	50 bis 90	30 bis 80	30 bis 80	60 bis 90
25	20	20	10	15
450	300	300	250	300
3	3	6	2	5
2	3	4	2	2
2	2	3	4	3
-40 bis +100	-40 bis +120	-40 bis +120	-60 bis +180	-20 bis +200
+120	+150	+140	+240	+310
2	1	2	1	1
2	1	2	2	1
4	4	2	3	2
3	2	2	4	2
2	3	1	4	1
4	4	6	6	1
6	6	6	6	3
3	3	5	3	1
3	2	2	5	2
3	3	4	4	3
	ă .	M	*	5
	200	ia.	is.	int
ja	nein	ja	ja	ja*

<u>Benötigen Sie weitere</u> Informationen und Preise?

Rufen Sie uns einfach an: Tel. (02777) 915-0

Georg GmbH Zentrale

Medenbacher Str. 19 35767 Breitscheid Telefon: (02777) 915-0 Telefax:

(02777) 915-259

Georg GmbH Niederlassung Erfurt

Fichtenweg 26 99198 Erfurt-Kerspleben Telefon: (036203) 554-0 Telefax: (036203) 554-59